skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Young, Aaron W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ultracold fermionic atoms in optical lattices offer pristine realizations of Hubbard models1, which are fundamental to modern condensed-matter physics2,3. Despite notable advancements4–6, the accessible temperatures in these optical lattice material analogues are still too high to address many open problems7–10. Here we demonstrate a several-fold reduction in temperature6,11–13, bringing large-scale quantum simulations of the Hubbard model into an entirely new regime. This is accomplished by transforming a low-entropy product state into strongly correlated states of interest via dynamic control of the model parameters14,15, which is extremely challenging to simulate classically10. At half-filling, the long-range antiferromagnetic order is close to saturation, leading to a temperature of T /t =0.05−0.05 +0.06 based on comparisons with numerically exact simulations. Doped away from half-filling, it is exceedingly challenging to realize systematically accurate and predictive numerical simulations9. Importantly, we are able to use quantum simulation to identify a new pathway for achieving similarly low temperatures with doping. This is confirmed by comparing short-range spin correlations to state-of-the-art, but approximate, constrainedpath auxiliary-field quantum Monte Carlo simulations16–18. Compared with the cuprates2,19,20, the reported temperatures correspond to a reduction from far above to below room temperature, at which physics such as the pseudogap and stripe phases may be expected3,19,21–24. Our work opens the door to quantum simulations that solve open questions in material science, develop synergies with numerical methods and theoretical studies, and lead to discoveries of new physics8,10. 
    more » « less
    Free, publicly-accessible full text available June 26, 2026
  2. A spatial search was performed using quantum walks of strontium-88 atoms in a combined optical tweezer-lattice platform. 
    more » « less
  3. null (Ed.)
  4. Coherent control of high–quality factor optical transitions in atoms has revolutionized precision frequency metrology. Leading optical atomic clocks rely on the interrogation of such transitions in either single ions or ensembles of neutral atoms to stabilize a laser frequency at high precision and accuracy. We demonstrate a platform that combines the key strengths of these two approaches, based on arrays of individual strontium atoms held within optical tweezers. We report coherence times of 3.4 seconds, single-ensemble duty cycles up to 96% through repeated interrogation, and frequency stability of 4.7 × 10 −16 (τ/s) –1/2 . These results establish optical tweezer arrays as a powerful tool for coherent control of optical transitions for metrology and quantum information science. 
    more » « less